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Abstract. A new approachis presentedfor the analysisof feedbackprocessesin a

nonlineardynamical system by observingits variations. The new methodologyconsistsof

statistical estimatesof the sensitivitiesbetweenall pairs of variablesin the systembased

on a neural network modeling of the dynamical system. The model can then be usedto

estimate the instantaneous,multivariate and nonlinearsensitivities,which areshownto be

essentialfor the analysisof the feedbacksprocessesinvolved in the dynamical system.The

method is describedand testedon synthetic data from the low-order Lorenz circulation

modelwherethe correct sensitivitiescanbe evaluatedanalytically.



1. Introduction

Feedback processes are present in dynamical systems that involve nonlinear relationships

among many variables integrated over time. A formalism from electrical circuit theory

[Bode, 1945] has been used to study feedback processes in climate models [e.g., Hansen,

1984; Schlesinger, 1985] using the sensitivities of the system (first derivatives of one variable

by another). This approach characterizes th e change of the equilibrium state of the system

after the introduction of an external forcing:

Such an approach is valid in a theoretical model where the instantaneous sensitivities

can be evaluated directly from the equations, h_,wever its application where the underlying

equations are unknown (or only partially kaowl. ) and all we have are observations of the

system behavior over time is more questiQnable This is the situation faced in the study

of climate. There are various ways to estimate these sensitivities in experimental studies.

With numerical models, one approach is to intr)duce a perturbation of one variable at

a time and then evaluate the impact on 6ther variables. The problems associated to

this approach are numerous. First, since the initial perturbation is limited to only one

variable, the inter-dependence (i.e., non-linearity ) of the sensitivities is not taken into

account. Even if many variables are perturbed , it is difficult to be sure that the estimate

of the multi-variate sensitivities is complete, Second, in most cases the sensitivities are

estimated by finite differences between (usually equilibrium) states of the system. These

differences can be generated by geographical location differences or by time differences,

the result is dependent on the strategy adopted [Slingo et al., 2000]. As we will see, this

simplistic approach can be highly misleading because it provides only the space and/or

time averaged sensitivities that may not actually represent the system dynamics. Another

problem with this approach is that the technique estimates sensitivities that are already

"polluted" by the feedback processes in the numerical model. For example, if the effect of

a feedback is to damp the impact of one sensitivity, the sensitivity measured will be an

under-estimate (the same problem happens for _n amplifying feedback process). To avoid

under or over-estimation of the sensitivities i their estimation needs to be done at a time



scalesufficiently small to neglect the impact of the feedbackprocesses.Moreover,such

analysescan only be performed on models, not on observations of a real system, so the

feedback estimates are only those what were introduced into the model, which does not

provide model validation. Third, the sensitivities are often estimated by finite differences

averaged over many geographical locations (e.g. global), which suppresses all the possible

non-local processes. A similar effect is produced if the model outputs (or observations) are

time averaged be.Fore analysis.

So in many studies, the hypotheses at the base of the feedback analysis are too crude:

linear model, constant sensitivities, mutual independence of sensitivities, mono-variable

conception of the forcing and response. The conclusions from these studies are questioneble:

a single feedback factor (i.e., a scalar) is supposed to explain the nonlinear multivariate

processes integrated over time. If this number is positive, the process is said to have an

amplifying effect on the initial perturbation. If the number is negative, the effect is a

damping. We think that this over-simplification is misleading and that a time and spa:e

analysis of feedbacks may be required to understand such complex phenomena as climate.

Even if the sensitivities were correctly estimated, this classical approach only

characterizes the change of the equilibrium state of the system after the introduction of

an external forcing. The transient period, between the beginning of the forcing and the

equilibrium is not described and the time needed to reach the new equilibrium remains

undetermined. So the results of this kind of analysis are often insufficient even for

comparison between numerical models and observations.

We first refine the terminology required to perform feedback analysis with an emphasis

on the discrete formulation of dynamical systems, which is better adapted to prediction, to

the description of the cause and effect relations underlying the feedback processes, and to

the use of observations in the analysis.

Our approach uses a statistical modeling of the dynamical system to infer, from the

observed behavior of the system, the sensitivities of the variables of the system. These

sensitivities are the key concept for the feedback analysis. They give the inter-dependences



of one variableon another that causethe feedbackloopsin a dynamical system.

Becausesuchempirical sensitivitiesprovide the relationshipsamongthe variablesthey

can be usedmore directly to understandthe physical processesinvolved in the system

dynamics (a model or observations)and to provide a more informative comparisonof

models to observationor one model to ano_her.A stability analysisof the dynamical

processesinvolved canalso beperformedusingthesesensitivities. For prediction purposes,

the temporal propagation of errors onto the:state of the system can also be analyzed

[Smith, 1997].

As a test of the validity of this approach,we apply it to the output (observations)

of the Lorenz low-order dynamical modelwherethe equationsare known and theoretical

sensitivitiescanbe calculateddirectly. We also evaluateclassicalfeedbackparametersand

comparetheir usefulnessasdescriptorsof the systemdynamicsto that of the instantaneous,

multivariate and nonlinearsensitivities.

2. Feedbacks in a dynamical system

There are two general ways of formulating a dynamical system: the continuous and the

discrete approaches. We prefer in this study the discrete formulation because it is simpler

to describe the cause and effect relationships between variables. Furthermore, the discrete

approach is more practical for prediction when no theoretical physical evolution model is

available. We adopt the discrete formalism in the following, but will refer sometimes to

the continuous case. The goal of this section is to show how time integration of dynamical

relationships leads to feedback processes and to highlight the role of the sensitivities.

a. Dynamical systems

The object of this study is the analysis of a physical dynamical system by observing

the time variations of the quantities defining the state of the system. A dynamical system

is often described by a set of Ordinary Differential Equations (ODE) which come from the

physics of the problem. For practical considerations or because these ODEs are not known,



the dynamical systemis often discretizedin the form:

x(t + 1) = A(P(t)) + 6(t) (1)

where X(t) is the p-dimensional vector of observable variables (defining the state of the

system) at time t, P(t) is the d-dimensional vector of variables defining the system behavior

(predictors) which can include X(t), ¢(t) is noise (instrumental or model errors), and A is

a mapping, possibly nonlinear (vectors and matrices are indicated in bold characters). This

kind of model is often used in atmospheric and oceanic sciences to perform, for example,

climatological predictions.

The determination of the good predictors P(t) is a crucial point for the quality of the

model. This _etermination uses all the physical a priori knowledge about the model. If

P(t) = X(t) the system is said to be auto-regressive. Sometimes, the prediction of X(t + 1)

requires the knowledge of X(t), X(t - 1),..., X(t - q) because the system dynamics

has an inertia that requires the knowledge of previous steps. Then, the system is said

auto-regressive with memory q, denoted an AR(q) model. However, defining a new state

variable X'(t) = (X(t), X(t - 1),..., X(t - q)), one can rewrite this AR(q) system as an

AR(1) model with memory 1.

If the dynamical system (1) is linearized near P(to), we obtain:

X(to + At) - X(to) = G(P(to)) . AP(t0) + e(t) (2)

where

G(P(to)) = cgX(to + At)
oP(to) (3)

is the Jacobian or sensitivity matrix of the mapping A at state P(to).

The uncertainty e(t) is often neglected, so the discretized system of equation (2) is

entirely defined by the sensitivities G(P(t)) of the dynamical system and by an initial state

P(to).
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b. General feedback analysis: sensitivities integration

For simplicity of notation, we suppose, as is true in most of the cases, that the system

is auto-regressive, i.e. the responses are equal to the predictors, X(t) = P(t)

Even if the mapping A of equation (1) is linear, the global response of the

dynamical system is not linear since the m_pping is integrated in time. If in a system

X(t + 1) = A. X(t) the matrix A is diagonal, the variables of the system are independent,

so each variable Xi evolves independently asXi(to + k At) =(Aii) k • Xi(to). The absolute

value ]Ai, I is the damping (if IAii[ < 1) orthe amplifying (if [Aii]> 1) coefficient of the

variable Xi ..................

If matrix A is non-diagonal, i.e. some of the variables of the system are dependent

on other variables, the system is more complex: an initial perturbation of one variable

will be propagated into all the variables thaL.t are dire:tly or indirectly dependent on this

initially perturbated variable. After k time _teps, the. state of the system is given by:

X(to + hAt) = A k • X(to). So, the responses, X(t), at any time, _, are still a linear

combination of the predictors at time, to, but the impact of an initiaI perturbation is more

complex than the previous case because feedback loops have mixed the initial perturbation

into each linked variable.

If the mapping ,4 of equation (1) is nonlinear, the Jacobians are dependent on the state

X(t). So, even if we linearize the mappingA=using its Jacobians, G(X(t)), after k time

the state of the system is given by: X(to + kAt) = [[-Ik=l G(X(to + l At))].steps, X(to)

which is even more complex, where l'I is the product symbol.

To define a feedback process in the disc!:ete formulation of a dynamical system, we need

at least two time steps to describe the feedback loops involved. If an initial perturbation

AX(t0) is introduced into the system at time, to, the response of the system at time,

to + At, is approximated to first order by:

AX(t0 + At) __ G(to, to + At). AX(to), (4)

where G(to, to + At), the gain of the system from to to to + At, is the Jacobian matrix
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G(X(t)) of the mapping A between [t0, to + At]: matrix G(to, to + At) has elements

OAi(to+At) OXi(to+At)
oxj(_o) = oxj(to) at coordinates (i,j). An initial perturbation AXj(to) on variable Xj

at time to is then propagated at time to + At to each variable X_ that is linked to Xj via

off-diagonal terms in G(to, to + At). But the resulting perturbations AXi(t0 + At) are the

direct impact of the initial perturbation, so there is no feedback during [to, to + At].

At time, t = to + 2At, the impact on the system is given to first order by:

AX(to + 2At)

_- G(to + At, to + 2At). AX(t0 + At) (5)

_-- G(to + At, to + 2At). G(to, to + At). AX(to) (6)

a(to, to + 2At)./,X(to). (7)

The previouly propagated perturbations, AXe(t0 + At), resulting from AXj(to) can then

perturb AXj(to + 2At), completing a feedback loop. The initial perturbation AXj(to) can

be amplified or damped into AXj(to + 2At). We see in this simple example that feedback

processes result from the time integration of the variable dependencies of the system. The

term G(to, to + 2At), representing the evolution of the system in two time steps, includes

these feedback loops.

c. Forcing / Response

We introduce in this section the concept of external forcing to formalize the

perturbations of the variables of the syste_-n we have discussed in the previous example. It

is important to note that the feedback processes are present in a dynamical system, even

when no external forcing is applied (forcing and feedback are often confused).

An external forcing is a perturbation of the internal variables of the system (i.e.

variables that define the state of the system). The external forcing has an impact on the

internal variables, but the reverse is not true: the forcing is independent of the internal

variables. There are many ways an external forcing could operate. The simplest model is

the introduction of an unique perturbation at time to: E(t) = EoS(to - t), a time-localized

8



volcaniceruption for example. In this case,_the impulsive initial perturbation will be

propagatedin time through the internal variables,following the inter-dependenciesof the

variables.This is the examplediscussedin the previoussection.

The external forcing can also begin at time to and remain constant in time:

E(t) = Eo, t E [t0, to + At,...]. In this case, the relations (5)/(7) become more complex:

AX(to + 2z_t)

_- E(to + 2At) +
OX (to + 2 At)

Ox (to + At)

ox (to + '2 At) Ox (to + At)
• E(to + At) + 0X(to + At) cOX(to) . E(to) (8)

_- Eo + G(to + At, to + 2 At). Eo + G(to, to + 2 At) • E0 (9)

If the gains of the system are constant, equal to a constant 15/ (i.e. a linear dynamical

system), then at time t + k At:

AX(to + k At) = (I + G + G2 +... + Gk) . Eo (10)

l G k+l

= I:G 'E° (11)

where I is the identity matrix. If the eigenva!ues of matrix G have an absolute value lower

than 1 (otherwise the system is unstable), the effect of the external forcing is stabilized, the

dynamical system eventually reaches in time a stabilized state:

I

AX(to + k At) __ _. E0, fork _ +oo (12)

G

_-Eo-_ I-G'E°" (13)

For example, a mono-variable system with G = 1/2, E0 = 1 and X(to) = 0 stabilizes at

lira X(to + k At) = 2, the forcing has changed the equilibrium state of the system. Figure
k-++oo

1 shows the values of the stabilized solution_ of this simple system for different values of G.

If -1 < G < 0 then the system stabilizes, but oscillates. If G is positive and close to 0, the

system stabilizes near E0. The closer the g_ of the system G to 1- (i.e., lower but close

to i), the higher is the value at which it stabilizes, lim X(to + kAt). If the absolute value
k_+c_

of G is bigger than 1, the system is unstable.
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d. One particular case: the classical analysis of a parallel feedback configuration

The previous examples are very general since each variable of the system can be

dependent on other variables. But in some cases, knowledge of cause and effect relationships

provides a priori information about the ordering and the structure of dependencies. It is

then possible, and recommended, to use this information. This kind of a priori information is

used, for example, in the Cause and Effect Analysis technique [Andronova and Schlesinger,

1991; Andronova and Schlesinger, 1992].

In the classical feedback analysis [Hansen, 1984; SchIesinger, 1985], it is supposed

that the external f)rcings Ex, of the system act on only one variable Xe of the system,

that all the other internal variables {Xi = Xi(Xd)} are all dependent on one particular

internal variable X _ (i.e., the diagnosed variable), that the impact of the external forcings

is observed on this particular internal variable Xd, and that the feedbacks act in parallel

(Figure 2). These _ ssumptions are very strong cause and effect constraints: the diagnosed

variable Xd is supposed to be more important than the others internal variables {Xi}, by

hypothesis the {Xi} are dependent only on Xd, and they are not directly dependent on the

external forcing. In this case, the feedback processes are assumed to act in parallel, i.e.,

they do not interact.

Since the external forcing Ex, of the system acts on only one variable, X¢, of the

system, the general multi-dimensional expression in equation (8) becomes a scalar relation:

_Ox_(to + 2 At). AX,(to + At)AXe(to + 2At) --, Ex, (to + 2At) + . OX,(to + At)

OXe(to + 2 At) OXi(to + At) . AXj(to) (14)+ ox,(to + z t) oa (to)
i j

We measure the effect of the constant external forcing, Ex,, on Xd, the diagnosed variable

(Figure 2). We then analyze the system AXe -----+ AXd. So the perturbations AXi(to + At)

and AXj(t0) are considered only for the diagnosed variable -,Yd. In other words, the impact

of the perturbations of other variables than Xd are not taken into account in this classical
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analysis(seeFigure 2). Thus, the expressi_ (14) becomes:

oxe(to + 2 At). AXd(to +/Xt)
AXe(to + 2At) __ Ex,(to + 2At) + OXd(to + At)

_ oxe(to + 2/xt) ox_(to + At)./XXd(tO) (15)+ ox,(to+Aq =oxd(to)
Due to the hierarchical dependencies adopted, Xe(to) ---+Xd(to + At) ---+ Xi(to + 2At), see

Figure 2, some of the partial derivatives in (14) are zero:

OXe(to + 2 At) OXe(to + 2 At)

OXd(to + At) - OXe(to +At) = 0, (16)

and the expression (15) simplifies to:

Axe(to+ 2At)__Ex,(to+ 2At) + v': o_ +__,_t)oxi(to+ At)Axe(to)
i#_:e aXi(to +/xt) aXd(to)

external forcing ,, ---,. "
........ feedl,ack terms

(17)

?? -_ Exo(to + 2At) + Hi(to, to + 2At)AXd(to) (18)
iCd,i_e

where the terms Hi(to, to + 2At) are the products of first (ierivatives describing the cause

and effect relations. Expression (??) can be multiplied by the gain G(to + 2At, to + 3At) of

the system AXe(to + 2At) ---+ AXd(to + 3At):

AXd(to + 3At) __ G(to + 2At, to + 3At) • AXe(to + 2At)

_- G(to + 2At, to + 3At) " Ex. (to + 2At) + G(to + 2At, to + 3At) "
i#d,i_e

Hi(to, to + 2At)AXd(to)

(19)

If the system is in equilibrium, or if At, the time discretization, is sufficiently small,

AXd(to + 3At) -_ AXd(to), thus:

(l + G(to+ 2At, to + 2At)'i_d,i#_ Hi(to, to + 3At)) AXd(to + 3At) _

G(to + 2At, to + 3At). Ex,(to + 2At) (20)

G(to + 2At, to + 3At) Ex_ (to + 2At) (21)
=, AXd(to + 3At) _ 1 - G(to + 2At, to +'3At) EiCd,iCe Hi(to, to + 3At)

G(to + 2At, to + 3At)__ ..... -xo(to+ 2At) (22)
I: E-7#d,i#_:'i(to:to+ 3At)
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wherethe terms fi(to, to + 3At) = G(to + 2At, to + 3At) • Hi(to, to + 2At) are called the

feedback factors. The gain with feedbacks is then defined by:

Gf(to + 2At, to + 3At) = G(to + 2At, to + 3At)
1 - _i#d,i#e fi (to, to + 3At)" (23)

The feedback fi factors are dependent on both the variable Xe perturbed by the external

forcing and the diagnosed variable, Xd, chosen in the beginning of the analysis. These

feedback factors are time-dependent, but this expression is traditionally [Peizoto and

Oort, 1991; Curry and Webster, 1998] given without time reference. This means that it is

supposed that, the system is in equilibrium or that the quantities are examined locally in

time.

Another way to find this expression, is to formulate this system as a "mono-variable"

forced dynamical system AXa(to) _ AXd(to + A t). The total gain of this system is defined

as GH which represents the feedback loops plus the non-feedback gain, where:

OXd(to+At)
• G = ox_(to) is the gain without feedbacks of the system AXe _ AXe

OXe (to+2At) OX, (to+At)
• and H = _i#d,i#e OX_(io+At) OXa(to) ' represents the feedbacks.

The forcing of the variable Xd is given by GEx,. In the limit of decreasing time steps, we

could use the expression (12), to obtain:

G

AXe - 1 - GH Ex" (24)

This expression converges to the continuo_Js case as At -_ 0. In the original field

where this formalism was developed, i.e., the analysis of electrical circuits [Bode, 1945],

the relation (15) is instantaneous since the electricity propagates continuously. In this

continuous case, the time reference in equation (15) can be suppressed. The same remark

holds if the system is in equilibrium, i.e., if the previous perturbations are constant in time.

Thus, this analysis has to be done locally in time or at equilibrium.

The gain of the system, GI, is very sensitive to the estimation of the factors, fi.

Furthermore, it is very important to estimate all these factors simultaneously since the
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effectof one particular feedbackis sensitiveto the presenceor or the absenceof other

feedbacks.

Figure 3 showsthe gain of the system,G], as a function of the unique feedback factor,

f, supposing that the gain of the system without feedback is G = 0.5. If f < 0, the gain

with feedback is damped, 0 < G I < G. If f = 0, the gain with feedback is unchanged,

G I = G. If 0 < f < 1, the gain of the system with feedback is increased, G l > G, and

lim = +oc (the system becomes unstable). If f > 1, G I is negativ,, so the system oscillates,

and it is unstable if G l < -1. We see in this figure how the effect of a feedback factor on

the system can be sensitive and highly nonlinear. So the significance of a feedback factor is

strongly dependent on the availability of the feedback factors of all variables: an isolated

feedback factor can't characterize the bebavio_ of the whole system.

e. One classical example

The following example as been intensively used in the literature. We suppose that the

global mean net radiation flux (solar minus terrestrial) at the top of atmosphere (TOA) is

in equilibrium (AFToA = 0). The question is: if a forcing is introduced into the system,

how will the system react ? The global mean surface temperature Ts is often taken as

diagnosed variable since a lot of other internal variables of the system are dependent on this

variable. Then, we can analyze the feedback process loops acting on Ts using the above

formalism if all feedbacks are assumed to #ctin parallel.

A forcing Ex, x, is introduced into an external variable, Xext (i.e. the solar insolation,

volcanic eruptions, etc). We analyze the system:

FroA(t + At)= F(X_xt(t),Xi(t),Ts(t)). (25)

The terms Xi are the internal variables oft_e system (i.e. that depend on the surface

temperature, Xi = Xi(Ts)) like the albedo, the water vapor, the lapse rate, the clouds, etc.

We suppose here that it is possible to express the external forcings, Ex,,,, in terms of

perturbations of the net radiation flux, ETOA. The forcing introduces perturbations into

the variables of the system; the link between these perturbations can be expressed by, see
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equation (17):

OFToA(tO + 2At) OXi(to + At)

AFToA(tO + 2At) = ETOA(tO + 2At) + E OXi(to + At) OTs(to) ATs(to) (26)
external forcing , i _ ,

feedback loops

If the equilibrium state is reached, or if the sensitivities are instantaneous, the reference

to time can be suppressed:

 FToA = EroA + Hi) Ts (27)

where the terms H, are the products of first derivatives describing the cause and effect

relations in equation (26). By multiplying this expression by the gain of the system without

feedbacks, G = aTs _ e finally obtain the following familiar expression:aFToA '

G G

,iTs = 1 - GEi Hi ETOA = 1 - Ei fi ETOA (28)

f. The classical analy,:is in a series feedbacks configuration

It is supposed agai_ that the external forcings, Ex,, of the system acts on only one

variable, X_, of the system. There are two diagnosed variables: Xel and Xe2, Xd_ being

dependent on Xel. Some of the internal variables {Xi_ = X{I(Xe_)} are dependent on Xe_,

and some others {Xi2 = Xi2(Xe_)} are dependent on Xe2. The impact of the external

forcing is observed on diagnosed variable Xe2 (Figure 4). This internal structure describes

a dynamical system X_ _ Xdl --+ X8_, with feedbacks in series. In this case, the gain of

the subsystems X_ _ Xe_ and Xel -+ Xe2 would be computed as in section 2.d. Then, the

global gain of the system would be G I = G._2 • G I_.

g. Comments on classical feedback analysis

We have seen in the two previous subsections that where particular cause and effect

relations in the system are known, the time reference is required in the discrete case, but

can be suppressed in two situations:

,, In an equilibrium state: the perturbations are stabilized oxN- = 0 (not to be confused

with zero forcing), so they are the same at each time step. The feedback analysis is
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then only a characterizationof the equilibrium state. There is no estimation of the

time required to reachthe equilibrium and we can't predict transient behavior of the

system.Furthermore,wedon't know a priori the sensitivities in the equilibrium state,

so weare required to assume(without evidence)that the sensitivitiesare constant

and that wehavea good estimateof them.

,, When the sensitivitiesare instantaneous: the relationsbetweenthe perturbations of

eachvariable of the systemare then valid without a time reference.But in this case,

instantaneousestimatesof the sensitivitiesare required and the feedbacksfactors

have to be computed at eachtime. To our knowledge,tt.is approachhasnot yet

beeninvestigatedsinceno techniquewasavailableto estiJnatetheseinstantaneous,

multivariate and nonlinearsensitivities_....

The classicalapproachto feedbackanalysisfrom the electrical cLrcuitstheory [Bode,1945]

was first usedon a theoretical energybalancemodel of the climate where instantaneous

sensitivitiesare available.Even if the estimation of sensitivities_ascrude, the applicability

of the techniquewas justified when the causeand effect relationshipswere supposedto

be known. In more recent studies,and particularly with the analysisof observations,this

approachto the estimation of sensitivitiesi.shighly questionable. In particular, the useof

this characterizationof the equilibrium state to predict the systemresponseto an external

forcing is difficult sincethe sensitivitiesusedto producethe equilibrium state areunknown.

Someof the limitations of actual studi_e._are:

- Model used: The hierarchicalmodelof c.auseand effect relations, describedby greatly

simplified relations betweensensitivities, is usually much too simple. For example,the

fact that the forcing/gain/responsesystemhas to be mono-variableis a very strong

simplification: suchassumptionsresult in the suppression/neglectof someperturbations

and somefirst derivativesin the system.

- Estimation of sensitivities: The sensitivitiesareoften estimated by finite difference

betweentwo (usually equilibrium) statesof the system.First, this approachmeasuresonly

the coincidenceof the changesin two quantities,but it doesnot meanthat there is a cause
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and effect relationship betweenthesevariables. The relationshipsmight also be indirect

(via the ordering of the dependencies).Second,this approachmeasuresthe changesin two

quantities and the sensitivity is then estimatedassumingthat the other variablesdo not

interact. This is a strong limitation sincetherearea lot of cross-linkagesin the variablesof

the climate system.Third, the finite differencefor the estimation of the sensitivitiescanbe

highly misleadingif the sensitivitiesof the systemarenot constant in time.

- Forcing process: The forcing model is often not expressed:localizedin time, constant,

growing in time, cyclic, etc ? The ways the external forcing evolvesin time are also

important for the study of the transient response.

- Better description: Previous approachesto feedbackanalysis are often only a

characterizationof the equilibrium state of the systemafter the introduction of an external

forcing. The transient period betweenthe beginning of the forcing and the equilibrium

state is not described,the time to reachthe equilibrium is not estimated. This is a real

drawback for the understandingof thesephenomena.Furthermore, the gain of the system

with feedbackfactors is highly dependenton the precisionof the sensitivity estimates.

In conclusion, the classical feedback analysis is limited by some very strong assumptions

like linearity (i.e., sensitivities constant in time), equilibrium, mono-variable cause and

effect relationships, etc, and so does not seem at all appropriate for application to the

climate system. Moreover, the resulting expressions for the feedback factors are products

of the instantaneous sensitivities, so it would seem .more straightforward to evaluate these

sensitivities instead. To avoid the classical limitations, the analysis needs to employ a

general feedback formulation to evaluate the nonlinear, multivariate and instantaneous

sensitivities in both numerical models and observations is important.

3. A nonlinear regression scheme for estimation of sensitivities

To estimate the sensitivities of the dynamical model in equation (1), we use a

multivariate nonlinear regression fit to the statistics produced by observing the behavior of

the system over a time period long enough to provide a good sample of the different states of
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the system.For this purpose,weintroduce a neural network techniquebecauseof its ability

to processlargedimensiondata (which will be helpful for further experimentson numerical

models)and its capacity to integrate a priori information about the problem [Aires, 1999].

Any other multivariate nonlinear regressiontechnique,such as spline interpolation or

ARMAX models,etc, couldbe usedinsteadof the neural network technique.

a. The neural network model .................

The Multi-Layer Perceptron(MLP) network is a mapping model composedof parallel

processorscalled "neurons". Theseprocessorsareorganizedin distinct layers: the first layer

(re,tuber0) representsthe input P = (Pi ; ..........0 < i < m0) with m0 the number of neurons in

la)er 0. The last layer (number L) represents the output mapping X = (xk ; 0 <_ k < rnL).

Th_ intermediate layers (0 < m < L) are called the "hidden layers". These layers are

cor, nected via neuronal links (Figure 5): two neurons, i and j, between two consecutive

layers have synaptic connections associated:_qth a synaptic weight wq.

Each neuron, j, executes two simple operations: first, it makes a weighted sum of its

inputs from the previous layer, zi; this signa!is called the activity of the neuron:

aj = __, wij. zi. (29)

ieInputs(j)

Then, it. transfers this signal to its output _hrough a so-called "transfer function", often a

sigmoidal function such as a(a) = tanh(a). The output zj of neuron j in the hidden layer is

then given by: zj = a (,einputs(j)_ wlj z,) . Generally, for regression problems, the neurons

in the output (last) layer have no transfer function. For example, in a one hidden layer

MLP (Figure 5), the k th output, xk, of the network is defined as:

jesl jes!

(3o)

where a is the sigmoidal function, aj is the activity of neuron j and Si is the i th layer of

th_ network (with i = 0 for the input layer). We have deliberately omitted the usual bias

term in this formula for clarity, but include it in the actual network.

I7



The key to our analysis is that any continuousfunction can be representedby a

one-hiddenl_,er MLP with this kind of sigmoid function [Hornik et al., 1989; Cybenko,

1989]. Hence the process of training the MLP to fit the observed multi-variate, nonlinear

relationship statistics is equivalent to deriving a multi-variate, nonlinear function that

behaves in a similar fashion as the dynamic system in question. The key advantage of the

neural network approach over some other methods is that the Jacobians (i.e., sensitivities)

can be evaluated directly from the MLP (see next section).

b. The learning algorithm

Given a neural architecture (number ( f layers, neurons and connections, type of transfer

functions), all the information of the netw ,rk is contained in the set of synaptic weights wij.

The learning algorithm is an optimization technique that estimates the network parameters

W = {wij} by minimizing a loss function, C(W), needed to fit the desired function defined

by observations as closely as possible. The criterion usually used to adjust W is the mean

square error in network outputs:

C(W) = _ / / (x_(P; IV) - tk)2H(tk/P)H(P)dtkdP (31)

with tk the k _h desired output component, xk the k th neural output component, H(t_/P)

the probability function of output tk given the input P, and H(P) the probability density

function of input data, P. If specific a priori information about the probability distribution

functions is available, other quality criteria than least-squares could be used. For example,

criteria involving higher-order statistics have been defined [Aires et aI., 2000]. Practically,

C(W) is approximated by the classical least square criterion:

-- 1 E

C(W) = _ _ (zk(P; W) - tk) 2 (32)
e=l

The Error Back-Propagation algorithm [Rumelhart et al., 1986] is used to minimize

_(W). It is a stochastic steepest descent (i.e. Newtonian minimization procedure) very well

adapted to the MLP hierarchical architec,mre because the computational cost is linearly

related to the number of parameters.
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c. The neural Jacobians

The important feature of neural network is that the adjoint model of the neuronal

model is directly available [Aires et al., i999]. The computation of this adjoint model (or

neural Jacobians) is accurate and very fast. Since the neural network is nonlinear, these

Jacobians are dependent on the situation _x: For example, the neural Jacobians in the

previous example of equation (30) (a MLP network with one hidden layer) are:

jesl ,_so

where _a" is the derivative of the transfer .....function a. For a more co,_plex MLP network

with many hidden layers, there still exists _ack-propagation algorithm for efficiently

computing these neural Jacobians. ...............

The neural Jacobians concept is a very powerful tool because it allows for the direct

statistical evaluation of the multivariate aad_Qnlinear sensitivities oI the dynamical system

under study.

d. Regularization

If a priori information about the dynamical model under study is available, it is

possible and recommended to use this know!edge in the neural network analysis. This a

priori information could be introduced in thethree distinct components of a neural network:

- Dataset: The quality and the representativeness of the dataset used for the training

of the neural network is directly responsible for the quality and the generality of the

nonlinear regression obtained. We wilt comment further on this during the construction of

the dataset for our application.

- Architecture: A lot of information£puld be used to define the neural network

architecture: ordering of variables, neighborhood system between variables, dependencies

structure, etc. A particularly promising development would be to use the ordering of

dependencies discussed in Section 2d to defi__:e the neuronal links of ;he neural model.
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- Training: If the sensitivity betweenan input and an output variable is already

known or if it is known that this sensitivity is constant, it is possibleto specify this a

priori information asa penalty term added to the quality criterion (32) usedto train the

neural network. Other kinds of solution constraintscan alsobe used: shapeof the solution

distribution, noise in the measurements,particular dependenciesbetweenvariables. Such

an approachhasbeenused,for example,in [Aires et al., 1999] in the atmospheric radiative

transfer field.

4. Analysis of the discrete Lorenz model

To test the definitions and the technique previously presented, we apply it to a simple

nonlinear, multivariate, chaotic, non-stationary and forced dynamical model for which the

sensitivities are known analytically. We choose here a discrete form of the low-order Lorenz

model [Lorenz, 1984]. This model is very general since it is not a mono-variable structure,

as described in Sections 2d and 2f, and it exhibits very complex behavior. Nonetheless, we

can define the time relationships directly from the equations of the model to test our ability

to infer these relationships from the observed behavior (model output).

We have discretized the Lorenz continuous model for two reasons: first, the discrete

formulation makes it easier to describe the cause and effect relations of the feedback

processes. Second, we know exactly, in this case, the analytical sensitivities of the system,

which allows for a better quantitative evaluation of our analysis technique.

a. Continuous Lorenz model

The low-order model used in this study was developed by Lorenz [Lorenz, 1984; Lorenz,

1990] to analyze the chaos and stability assumptions about the atmospheric circulation.

This simple model is able to represent the Hadley circulation and is used to determine the

stability or the instability of this circulation (stationary or migratory disturbance). This
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model is definedby three Ordinary Differential Equations (ODE):

dx__

dt

dr(_)
dt

dt

=-r_(t)-z_(t)-ax(t)+ aF,

= X(t)r(t)- bX(t)Z(t)- r(t)+ F_

= b x(t) r(t) + x(t) z(t) - z(t)

where:

(34)

• t is the time (in units of about 1 day),

• X is the intensity of the symmetric globe-encircling westerly wind current and also

the poleward temperature gradient (assumed to be in permanent equilibrium with it),

t

• Y is the cosine phase of a chain of superposed large-scale eddies, which transport heat

poleward at a :ate proportional to the square of their amplitudes,

• Z is the sine p _ase of a chain of superposed large-scale eddies, which transport heat

poleward at a :ate proportional to the square of their amplitudes,

• t:1 is a zonally symmetric thermal forcing on X,

• F2 is a zonally asymmetric thermal forcing on Y.

The two forcings F1 and F2 are the values to which X and Y would be driven if the westerly

current and the eddies were not coupled.

The discretization of these ODEs is avery delicate process, but the Runge-Kutta

fourth-order technique can be used for that purpose. Figure 6 shows the integration

of 34 from to = 0 to T = to+NAt using_ a = 0.25, b = 4, F1 = 8, F2 = 1 and

At = 0.08. The initial state of the system at time t = 0 is taken as: X(0) = 1.312465072,

Y(0) = 1.486416698 and Z(0) = 0.34878781::44. Lorenz has shown that this system with

these parameter values has a chaotic behavior.
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c. Discretization of the dynamical system

We are not interestedin a perfect simulation of the Lorenz model; rather, we are

interested in a representation of this system in a form like

y(t + 1) -- .4 y(t) , (35)

z(t + 1) z(t)

as a test of our analysis technique.

By discretizing (34), we obtain:

x(t + 1) = At [-Y(t) 2 - z(t)_ +a rl] +(1 -a At) x(t)
Y(t + 1) = At [-b X(t) Z(t) + £2] +(1 - _t + At X(t)) Y(t) (36)

Z(t + l) = At b X(t) Y(t) +(1-t-/ktX(t)-At) Z(t)

where At is the discrete time step.

The size of the time step At needs to be sufficiently small so that the linearization of

the system during a time interval is accurate in order that means that the hypothesis that

the Jacobians of the system are constant during the time interval is true.

The time discretization is also directly related to the regularity of the Jacobians of

the system: high complexity requires small time steps to ensure a good description of the

evolution of the Jacobians. We take At = 0.08.

The differences between the fourth-order Runge-Kutta integration of (34) and the

discrete Lorenz model 36 are shown in the Figure 7. We see that these differences are small

at the beginning of the period, but that the amplification of these little difference becomes

important over time since the system is chaotic. The behavior of the continuous and the

discrete systems seems to be the same, in particular the same amplitudes for the minima

and maxima are observed. All that is required to test our analysis is that the discrete model

exhibit complex, nonlinear behavior: we take the discrete model to be the truth and test

whether we can infer the correct the relationships with our neural network technique.
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d. Sensitivities of the dynamical system

The Jacobian matrix of the discrete system is:

X(t + 1)

G Y(t + 1)

Z(t + 1)

1-aAt

--At b Z(t) + At Y(t)

( _ ox(t+_ ox(t+_) I

ox(o oY(t) oz(o

_ _ (37)
OX(t) OY(t) OZ(t)

OX(t) av(t) oz(o

-2 At V(t) -2 At Z(t)

1-/xt +/xt x(t) -b At X(t) J (3s)1+ At X(t) - /xtAt b Y(t) +/xt Z(t) At b X(t)

These Jacobians are dependent on the state of the system, so they are al;_o dependent on

time and the hypothesis of constant Jacobians, as in classical feedback an :lysis, can not be

used to understand this system.

e. Theoretical feedback analysis

The two external forcing, aF1 on X, and F2 on Y, are continuous and constant in (34).

In the discrete formalization, this is simulated by a constant impulsive forcing:

AX(to+kAt) =AtaF1
AY(to+k At) =AtF2

for k = O,...,N (39)

If the beginning state of the simulation is chosen as:

X(to) = o
r(to) = o

Z(to) =o

(40)

then, the state of the system at the next time step is given by:

X(to+At) =AtaF1
Y(to + At) =AtF2

Z(to + At) =0

(41)
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and, for the next time step:

X(to+2At)
Y(to + 2 At)

Z(to + 2 At)

=2AtaF1-At s F22-At 2a 2 F1

= 2 At F2- At _ F2 + At s a F, F2

= At 3 a b F1 F2

(42)

and so on. We analyze the impacts of the external forcings, a F1 and F2, in the diagnosed

variable, chosen here to be X.

The perturbation at time to + At, AA(t0 + At) = At a F1, is straightforward. At time

to + 2 At, without feedbacks, the forcing would simply be added:

AX(to + 2 At) = 2 At a F_ (43)

With feedbacks, the true perturbation is given by:

OX(to + 2 At)_ r,
AX(to + 2 At) = Ex(to + 2 At)+ _-;-_i_:'A--_ -x_o + At)

OX(to + 2 At)
+ Ey(to + At)

OY(to + At)

= 2AtaF1 - At3F22 - At2a2F1 (44)

Comparing expression (43) and expression (44), we note the presence of two correction

factors giving the contribution of the feedback processes: so far there are feedbacks caused

only by the integration of the variables over time. This expression for the perturbation is in

agreement with first equation in (42).

For the description of the indirect feedbacks, three time steps are required. At time

to + 3 At, the integration of the external forcings is even more complex:

extern&l forcing

Ex(to + 2 At) + OX(to + 3 At)Ey(to + 2 At)
OY(to + 2 At)

.i

direct feed ba, cks

[0X(to + 3 At) 0X(to + 2 _,t)

[OX(to + 3 At) OX(to + 2 _t)

+ to-W_o+2 At) oY(,o+ A,)

Ox(to + 3 At) OF(to + 2 At)
+ +

OF(to + 2 At) OX(to + At)

indirect feedbacks

OX(to + 3 At) OY(to + 2 At)
+

OY(to + 2 At) @Y(to+At)

indirect feedbacks

ox(,o +sA,)oz(,o +2 __p]
Oz(to _ _t) ox(to + _,t) J Ex (to + At)

oX_,o+_,,,_oz(,o+=A,)l (45)
oz(to+_ o--V_o_£-_ j Ey(,o +at)
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We note in this expression some terms that donot appear in the classical analysis formalism.

For example, the direct feedbacks terms (due to time integration of the variables) are

suppressed in the classical analysis. Furthermore, we see that in this expression both

forcings (on variable X and on variable Y) are taken into account, which is not possible in

the classical approache.

Integrating the system for one more time step would be highly complex, this is the

reason why prediction of this kind of dynamical system is a difficult problem. To perform

prediction, the model needs to represent the sensitivities with a high degree of precision.

Otherwise, an error at or. _. time step is rapidly amplified in the next time steps.

The classical formalism for the feedback analysis is not well adapted to the analysis of

the Lorenz system sincehere is no preferred _riable on which the other two variables of

the model depends. So w3 see in this simple example how limited the assumptions used in

the classical feedback analysis formalism a!'e.,,,,and how such an analysis could be misleading.

Again, it is clear that evaluation of the sensitivities is more straightforward than evaluation

of feedback factors, which are products of sensitivities. However, for illustrative purpose

we will also use the classical formalism to calculate feedback factors because they are more

familiar. If we choose the variable Y as :heyariable affected by the external forcing and X

as the diagnosed variable, the gain of the s_'stem E_ _ AX is given by, see equation (24):

H

AX = 1 - GHEY = Gf . Ey (46)

where:

G

= 1 -::_z .f_'v Ey (47)

• ___ OX is the gain without feedbacks of the system Ey _ AX,

• and H = av av ax,"6Y + _i ox, ox"

The three feedbacks factors for this mono,variable system are defined as:

fvx = OX OYor ox (48)

25



fzzx _ OX c3Y OY
cgY OY OX (49)

fYx _ OX cgY c3Z
OY aZ OX (50)

Note that the sensitivities used in this relation still are dependent on time and have to be

estimated precisely, so that the feedback factors are also time dependent. As we will show,

this fundamental property of complex, nonlinear dynamical systems reduces the value of

the classical (linear) feedback analysis for understanding the system behavior. Note again

that the above quantities are not the true feedback factors for the Lorenz model since they

are defined using invalid assumptions.

5. Experimental results

a. Construction of the dataset

The quality of the dataset used to evaluate the sensitivitie,, is a crucial point. For

example, using data from a system in equilibrium or from a sy,,tem during a transient

change will not give the same results in the analysis. Ideally, a good dataset would be one

including all ranges of variability for all combinations of the variables of the system. The

more situations that are included in the dataset, the larger will be the range of validity of

the sensitivity estimates. This situation parallels that in climate analysis where the range

of validity is limited by the range of climate states actually observed.

The discrete dynamical version of the Lorenz model stabilizes more rapidly onto its

attractor thar, the continuous version. So to create a dataset closer to the behavior of the

continuous system, we choose 200 noisy states of the continuous system as initial states

for 200 trajectories of 1000 times steps of the discrete system in equation (36). The final

dataset is then composed of N = 200, 000 couples {(I k, O k) ; k = 1,..., N}, where

I k = (X(to + k At), Y(to + k At), Z(to + k At)) is an N x 3 matrix of the inputs of the

system and O k = (X(to + (k + 1) At),Y(t0 + (k + 1) At),Z(t0 + (k + 1) At)) is an N x 3

matrix of the outputs. Each couple is linked by: O k = A(Ik).

The parameters for the Lorenz model are the same as previously: a = 0.25, b = 4,
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F1 = 8, F2 = 1 and At = 0.08, but we have-i_troduced a Gaussian noise A/'(0, 0.001) at each

time step and in each variable. Figure 8 Shows the resulting noisy trajectories included in

the dataset.

b. Linear and nonlinear regressions

If a priori information is available about what are the good predictors, the dynamical

system can be described as a linear modeIi In the Lorenz case, the good predictors, P(t),

of the general model (1) can be determined from the theoretical model (36)"

P(t) = (X(t),Y(t),Z(t),y2(t),Z2(t),X(t)Y(t),X(t)Z(t),F_,F2). (51)

In this configuration, the dynamical system of equation (36) becomes:

\

X(t + 1)

JY(t + 1)

z(t + 1)

= A.(X(t),Y(t),Z(t),Y2(t),Z2(t),X(t)Y(t),X(t)Z(t),F_,F2) (52)

where the constant matrix A is given by:

1-aAt 0 0 -At -At 0 0 aAt 0

\

JA = 0 1At 0 0 0 -At -b At 0 At

0 0 t - At 0 0 b At At 0 0

(53)

A linear regression in this _case would give a good estimate of the matrix A. This is a very

general idea: all nonlinear dynamical systems could be simplified, and even linearized, if all

of the good predictors are known.

In practise, this a priori information is not available, so choosing the good variables

to predict system behavior is a key issue that has no general answer. Usually, then, the

predictors are chosen as the state variables; model (1) becomes:

x(t + 1)
Y(t + 1)

z(t+l)

=A

Ix(t) )
y(t)

z(t)

(54)
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Now, a linear regressionanalysisapproximatesthe nonlinear function A by a linear

model: ,4 is replaced in (54) by a 3 x 3 matrix A. This matrix is estimated by minimizing

the least squares criterion and is given by:

A_-_
T.:/

I t • O
(55)

The use of this linear regression is already an improvement compared to classical

approaches because it allows the simultaneous estimation of multivariate sensitivities.

For a nonlinear regression, we use an ML2 network with one hidden layer. The

architecture has three units in the input layer coding I = (X(t), Y(t), Z(t)), 30 units in the

hidden layer (this number was chosen by trial in the training phase) and three units in the

output layer coding the prediction, O = (X(t + 1), Y(t + 1), Z(t + 1)).

For the training of the neural network (i.e. estimation of the parameters for the

nonlinear regression), we have used 150,000 points randomly chosen from the data set

previously constructed and for the test data (i.e. to measure the ability of the model to

generalize to unknown data) we have taken the remaining 50,000 points.

In Figure 9, the theoretical (points) function ,4 and its two estimates (by linear and

neural network regressions) are illustrated. For display purpose, each plot represents one of

the variables at time t + 1, as a function of a variable at time t, supposing that the two

other variables are equal to their mean values. It is clear that the neural network regression

is very precise (differences with the theoretical function are undetectable) and useful for the

nonlinear behavior (X(t + 1) as a function of Y(t), for example), where the linear regression

is very poor. This figure shows how important the nonlinear aspect is: the multivariate

approach of the linear regression is not sufficient. These conclusions are confirmed in Figure

10 where the RMS error for the estimation of the functions is given. Here the errors of the

linear regression are nearly as large as the variability of the quantities.

A dilemma that we will be faced with in applying this technique to a real ease,

numerical model or observations of the climate, is that we do not know the true answer

as we do here for the Lorentz model. Hence, we must develop practical ways to assess the

fidelity of the analysis results. One possibility is to conduct "prediction" experiments where
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wepick manyspecificand different episodesin the observedrecord (preferably time periods

not included in the original analysis),initialize the neural network at the beginningstate,

and calculate forward for a short time intervao]::The goalof suchexperimentsis diagnostic,

to test quantitatively whether the derived .sensitivitiesusedin the neural network can

reproducethe observedsystemdynamics in casesnot includedin the original analysis. It

is not our goal to proposethat sucha neural network be usedfor climate forecasts(i.e, be

usedasa statistical forecastmodel) in placeof a physicalmodel of the climate (see [Yuval,

1999]for a previousstudy on this subject). Rather, weareinterestedin whether the derived
.L

sensitivities can be used to understand the physical processes; at least the sensitivities of a

model can be compared with observations. We have tested this idea by making prediction

runs with our neural network representatio_! of :the Lorentz model: the calculation proceeds

by calculating the state of the system at time step, t + 1, from the state and sensitivities

of the system at time, t; the sensitivities are then calculated at time, t + t, and used in

the next cycle. Figure 11 shows the evolution of the rms error of the predictions based

on the linear and our nonlinear statistical models against the actual model started at the

same state (each time step = 0.08 units, about 2 hr in the scaling of the equations). As

expected, the nonlinear regression by the neural network does much better than the linear

regression, but the fact that the Lorentz system is chaotic (with the particular parameter

values used) results in a relatively rapid increase of prediction error, even with an accurate

approximation of the system dynamics. Figure 12 illustrates the time records from the

prediction model and the actual model. ..........

c. Analysis of sensitivities

We illustrate the retrieval of the variable sensitivitie s in the form of histograms of

their distribution of values as a functions of X(t). Similar figures (not shown) are obtained

as function of Y(t) or Z(t). The standard=deviation of the theoretical sensitivities of the

system are shown in Figure 13, indicating that the all sensitivities of the system, except for

ax(t) , are not constant, o.
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The classical approach for the estimation of sensitivities takes the finite difference in

two variables between two (usually equilibrium) states of the system or two extreme events.

For example, for the estimation of Ax_--_, two sets of extreme events of the variable Y could be

selected in the observations and the averages of the state differences < AX > and < AY >

estimated. Then, the following approximation would be used:

(56)<AY>"

We see ho_ this approach can go wrong because it is so dependent on the selection of

data: at best, it gives a crude estimate of the mean sensitivity for the selected dataset of

extremes. The results of this approach for the Lorenz model would be very poor.

The particular sensitivity ox(t+_ is the only one that is constant, i.e. does n(,t dependox(t)

on the state of the system: in equation (38), ox(t+_ 1 "a At (the values in Fig,,re 13 areox(t)

not perfectly equal to zero due to numerical imprecision). The linear regression, for this

particular sensitivity, is then a good estimation technique. So the results are good in this

particular case, but for the eight other sensitivities, the results of the linear regression are

insufficient. In a real world case, we would not know which results are correct, if any.

The neural network-based estimates of the sensitivities (Figure 14) are a considerable

improvement in comparison to the linear regression-based ones (except for the constant

sensitivity _ox(t) at extreme values of X(t), but the differences are still negligible). Note

that the magnitudes of the sensitivities are very different, yet our technique seems to be

able to retrieve these different orders of sensitivity in the system. Furthermore, these results

are good if we compare the rms errors with the natural variability described in Figure

13. These results are summarized in Table 1. Since linear regression-based sensitivities

are constant by assumption, the rms errors of this representation are essential equal to

the standard deviations of the sensitivities. The improvement of the neural network-based

sensitivities is considerable with respect to the linear regression: standard-deviations errors

is always (except for the constant sensitivity) smaller than the natural standard-deviation of

the theoretical sensitivities by one and somtimes two orders of magnitude. Given the large

range of sensitivity magnitude, it is notable that the RMS errors of the neural network are
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uniformly distributed over the nine sensitivities,evenif the variability of the sensitivities is

quite different. Table 1 summarizesthe impr0vementgainedby useof the neural network

Jacobiansto estimate the instantaneous,multivariate and nonlinear sensitivitiesof the

discreteLorenzdynamical system.

Figure 16 showsan exampleof the evolution in time of the theoretical and neural

network estimatesof sensitivities. The differencesbetweenthe theoretical sensitivities

and the neural network-basedestimatesare undetectablein this figure. This figure also
,i

highlights the more complex role of the feedbacks processes: when the state of the system

reaches some extreme value, the sensitivities change, even in their sign, taking to the _ystem

back towards a middle range of values and finally to stabilize the system on its attractor.

For example, using the theoretical sensitivities in equation (38), we can analyz,, the

relation between the variables X and Y. !_f_Y is large and positive, then the sensitivity

ox(t+l_ov(t)= -2 At Y(t) becomes large and negative. So, if Y continues to increase, the

variable X will decrease even more rapidly: But the auto-sensitivity oY(t+l_ (the most
or(t)

important sensitivity for the variable Y) is eq33al to 1 - At + At X(t), which will be lower

than 1 (damping effect) when X is lower than 1. One consequence of this behavior is that

particular sensitivities, even when they are small on average, can still have a strong impact

on the behavior of the system. A linear regression analysis assuming that the sensitivities

are constant in time, may provide some estimate of mean sensitivities from a dataset. For

example, the sensitivity ox(t+_ is, on average, nearly zero. A linear analysis, in this case,
azct)

might suggest neglecting this relationship in understanding the system. Figure 15 shows

how wrong this approximation would be: this figure represents the discrete Lorenz model

defined in equation (36) with and without this particular sensitivity. The two trajectories

have a quite distinct behavior: the simulation without the sensitivity oscillates more

strongly and with a different time scale. The behavior of the complete system is produced

by oscillations of the particular sensitivity, depending on the state of the system, between a

positive and a negative value, theby stabilizing the system dynamics.

These results are special features of the general tendency of the sensitivities to exhibit
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similar shapesin their time records(Figure 16), which meansthat they areclosely linked

with eachother. This type of nonlinear behavior preventsa linear, evenmulti-variate,

regressionanalysis from extracting even approximate information about the system

dynamics. Comprehensionof the systemseemsto requirea more accuraterepresentationof

the time evolution of the multi-variate sensitivities.

d. Feedback analysis

\¥e haveseenthat the classicalapproachfor the feedbackanalysis,which makesstrong

(and incorrect) hypothesesabout the dynamical system,is not well adapted to the Lorenz

model.

However,the feedbackfactors can still be computedfor the theoretical function, the

linear regressionmodel and the neural network model accordingto equations(48)/(50). We

supposeherethat theseexpressionsareapplicableto showthat thesefeedbackfactorsevolve

in time (Figure 17), in violation of oneof the assumptionsusedto describethe expressions.

The feedbackfactors (48)/(50) are not simple and do not improve our understanding of

the system since their physical interpretation is confused since these feedback factors are

products of the sensitivities. The sensitivities, themselves, seem to be the more fundamental

quantities. Furthermore, as we showed in Section 2, without all the assumptions at the base

of this formalism (linearity, constant sensitivities, hierarchical cause and effect relationships,

constant forcing, equilibrium state, etc), the whole formulation in terms of feedback factors

falls apart.

6. Concluding remarks

What we have learned with this study of the Lorenz model is that the feedback

processes are dependent on some important particular properties of the dynamical system

under study. First, the feedback processes appear in a dynamical system when multivariate

sensitivities are integrated over time. Second, if the system is nonlinear (i.e. the dynamical

operator in equation (1) is nonlinear), the sensitivities are not constant with time, which
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meansthat the feedbackprocessesevolve in time. Third, eachfeedbackhas a strong

impact on the characterand behaviorof the dynamical system,eventhose that may have

a small time-averagedmagnitude canhavea stabilizing effect that changesdrastically the

characteristics of the system. Without such feedbacks the dynamical system would have a

tendency to destabilize when an external fQ._._ing is introduced. The feedback processes have

a stabilization effect, so the system does n;)Ldiverge too much from its initial equilibrium.

But this new equilibrium state could be diffe!Lent, with for example a higher frequency of

extreme events. This is a theory that has been discussed recently by [Palmer, 1999]. Such

an effect might explain the increase of the frequency of ENSO events with an increase of

C02.

We have shown that the classical techni.qfie _o analyze climatological feedback processes,

from the electrical circuit theory, is, by hypotheds, very limited in its validity when applied

to highly nonlinear multi-variate systems. Its ai,plicability to the climate problem is even

more questionable. Furthermore, the results of this kind of classical analysis are no more

than a "schematic" measure of feedback processes at equilibrium of the system, which may

be very misleading.

In comparison, the multivariate, instantaneous and nonlinear sensitivity concept, is

more generally applicable without these constraints, and appears to be a good way of

understanding the behavior of a system with coupled feedback processes. This general

technique allows the quantification of these processes both spatially and temporally. This

dynamical information seems to be more Useful than classical feedback factor (only one

number per variable).

Our technique for statistically inferring the complex network of sensitivities is

particularly efficient and its generality and simplicity allow for the use of important a priori

information in real-world studies. The dat_et used in our analysis technique needs to satisfy

some statistical requirements. First, the space and time sampling needs to be adequate

to the description of the space and time variability of the sensitivities that originate the

process feedbacks, so that the assumption that the sensitivities are constant over one
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time step is an account approximation. Using too coarsetime sampling is equivalent to

usingtime-averageddata, which mixesmany physical processesand ruins the sensitivity

estimates. Using space-averageddata is also dangerous;for example,a mean sensitivity

equal to zero could be generatedby two opposite regimeswith non-zerosensitivity. In

other words,even if we arestudying the longer-termbehavior of the system,we must

resolvethe dynamicsappropriately or the nonlinear integration will be incorrect. A study

on the space/time variability of the sensitivities is then a prerequisite for the definition of a

dataset sampling for feedbackanalysis.Second,the datasethas to havea good spaceand

time coveragein order to representasmany climatological situations aspossible. In other

words, the dataset should contain all possiblecombinationsof the state variables. Th

moresituations in the dataset, the better will be the "laws" inferred by the analysis.T_ese

two points are a major argument to useactual, very large, long-term, datasetsinsteadof

generatingnew ones,limited in time. Moreover,thesecommentsmeanthat the dynamics

of the systemcannot be correctly deducedfrom datasetswhere individual quantities have

beenseparatellyaveragedon spaceand time.

Our techniquehas the advantageof beingapplicableto numerical model data aswell

as observations,which meansthat the important work of inter-compari_sonof modelsand

of validation of modelscould be carried out with a meaningfulmeasure:the sensitivitiesof

the variablesof the system. This diagnosticmeasureis particularly interesting becauseit

concernsvery intuitive and physicalquantities. Comparisonsof the sensitivity relationships

could also be made with field experimentdata to understand how physical processes

product thesesensitivities. Thus, our analysisapproachprovidesa framework for a whole

newattack on theseproblems.

The statistical modelestimatingthe sensitivitiescanalsobeusedto study the response

of the systemnew equilibrium state, including the time to reachequilibrium after a small

perturbation. This simplified model could also be usedto analyze the propagation of

uncertaintieswhenpredictionsareperformed. In other words, the neural network statistical

model providesa better approximationof "small perturbation" behavior than attempts
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to linearize the system by dropping relationships. The next step of theseideasis to use

this new techniquefor more complicatedclimate systemsinvolving real observationsor

numerical modeloutputs.
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Figure 1. The stabilized values lira fix(t0 + k At) of a mono-variable linear system for
k-_+ov

different values G of the gain of the _'stem and with external forcing E0 = 1

Figure 2. Feedback loops system in parallel

Figure 3. Analysis of the gain G] oirt_e system as a function of the unique feedback

factor f, with G = 0.5

Figure 4. Feedback loops system in series

Figure 5. Architecture of a MLP nei]ral network with L layers, with inputs P and

outputs X

Figure 6. Lorenz model, with parameters a = 0.25, b = 4, F1 = 8, F2 = 1 and At = 0.08,

simulated by fourth-order Runge-Kutta

Figure 7. Fourth order Runge-Kutta (continuous lines) and discretized Lorenz model

(dashed lines) with parameters a = 0.25, b = 4, F1 = 8, F2 = 1 and At = 0.08

Figure 8. Noisy trajectories of the dataset from the discrete Lorenz dynamical system

Figure 9. Representation of the theoretical Lorenz Dynamical operator (continuous

line), its neural network estimate (dotted lines), and its linear regression estimate (dashed

lines)

Figure 10. RMS error for the estimation of the dynamical Lorenz operator: neural

network regression (continuous lines), and linear regression (dashed lines)

Figure 11. Prediction RMS error for the Neural Network regression (continuous line)

and the Linear regression (dashed line) as a function of the forecast range (in time steps

At = 008)

Figure 12. An example of prediction With a forecast range of 24 time steps

Figure 13. Standard-Deviation of the sensitivities of the discrete Lorenz dynamical

system

Figure 14. Root Mean Square error for the sensitivities estimates: neural network-based

estimates (continuous lines) and linear regression-based estimates (dashed lines)
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Figure 15. Discrete Lorenz model (continuous line) and discrete Lorenz model minus

the sensitivity _ (dashed line)az(_)

Figure 16. Jacobians evolution through time: theoretical Jacobians (continuous line),

linear regression based estimates (dotted lines), and neural network based estimates

(dashed lines)

Figure 17. Feedback factors evolution through time



Table 1. Statistics on true and retrievedsensitivities

Sensitivity Statistics Theoretical Linear NeuralNetwork

ox(t)

oz(t)

ax(t)

aY(t)

oz(t+l_
ax(t)

oz(t)

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-Dev

RMS Error

Mean

Std-D_v

RMS Error

0.980 0.973 0.981

0.000 0.000 0.003

0.007 0.003

-0.077

0.133

-0.025 -0.076

0.000 0.132

0.144 0.004

-0.057 -0.064

0.146 0.000

0.147

-0.077

0.297

0.014

0.000

0.310

0.955

0.048

0.979

0.000

0.054

-0.141

0.192

-0.133

0.000

0.193

0.184

0.281

0.259

0.000

0.291

0.141

0.192

0.226

0.000

0.210

0.955

0.048

0.962

0.000

0.049

-0.057

0.145

0.004

-0.077

0.297

0.003

0.956

0.043

0.003

-0.141

0.193

0.003

0.184

0.281

0.004

0.142

0.192

0.003

0.955

0.048

0.O03
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Figure 1. The stabilized values lim X(to + k At) of a mono-variable linear system for
k--++oo

different values G of the gain of the system and with external forcing E0 = 1
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Figure 2. Feedback loops system in parallel
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